OSI

Что такое osi: определение, основные принципы, примеры и практические советы. Изучайте продвинутом тестировании с подробными объяснениями для начинающих специалистов.

OSI.

Модель OSI является эталонной. Полное название модели выглядит как «Basic Reference Model Open Systems Interconnection model», где Basic Reference Model — это как раз некая образцовая модель. Сама модель состоит из семи уровней.

Каждый уровень имеет свои PDU (Protocol Data Unit), представляемые в той форме, которая будет понятна на данном уровне и, возможно, на следующем до преобразования. Работа с чистыми данными происходит только на уровнях с пятого по седьмой.

Модель OSI делится на две группы:

  • Media layers (уровни среды).
  • Host layers (уровни хоста).

Уровни группы Media Layers (L1, L2, L3) занимаются передачей информации (по кабелю или беспроводной сети), используются сетевыми устройствами, такими как коммутаторы, маршрутизаторы и т.п.

Уровни группы Host Layers (L4, L5, L6, L7) используются непосредственно на устройствах, будь то стационарные компьютеры или мобильные устройства.

Первый, физический уровень (physical layer).

Устройства физического уровня оперируют битами. Они передаются по кабелям (например, через оптоволокно) или без — например, через Bluetooth или IRDA, Wi-Fi, GSM, 4G и так далее.

У канального уровня есть два подуровня — это MAC и LLC. MAC (Media Access Control, контроль доступа к среде) отвечает за присвоение физических MAC-адресов, а LLC (Logical Link Control, контроль логической связи) занимается проверкой и исправлением данных, управляет их передачей. Для упрощения указывается LLC на втором уровне модели, но, если быть точными, LLC нельзя отнести полностью ни к первому, ни ко второму уровню — он между.

Коммутаторы.

На втором уровне OSI работают коммутаторы. Их задача — передать сформированные кадры от одного устройства к другому, используя в качестве адресов только физические MAC-адреса.

На канальном уровне активно используется протокол ARP (Address Resolution Protocol — протокол определения адреса). С помощью него 64-битные MAC-адреса сопоставляются с 32-битными IP-адресами и наоборот, тем самым обеспечивается инкапсуляция и декапсуляция данных.

Третий уровень, сетевой (network layer).

На третьем уровне появляется новое понятие — маршрутизация. Для этой задачи были созданы устройства третьего уровня — маршрутизаторы (их еще называют роутерами). Маршрутизаторы получают MAC-адрес от коммутаторов с предыдущего уровня и занимаются построением маршрута от одного устройства к другому с учетом всех потенциальных неполадок в сети.

Четвертый уровень, транспортный (transport layer).

Четвертый уровень — это посредник между Host Layers и Media Layers, относящийся скорее к первым, чем к последним. Его главной задачей является транспортировка пакетов. Естественно, при транспортировке возможны потери, но некоторые типы данных более чувствительны к потерям, чем другие.

Например, если в тексте потеряются гласные, то будет сложно понять смысл, а если из видеопотока пропадет пара кадров, то это практически никак не скажется на конечном пользователе. Поэтому при передаче данных, наиболее чувствительных к потерям на транспортном уровне, используется протокол TCP, контролирующий целостность доставленной информации.

Для мультимедийных файлов небольшие потери не так важны, гораздо критичнее будет задержка. Для передачи таких данных, наиболее чувствительных к задержкам, используется протокол UDP, позволяющий организовать связь без установки соединения.

При передаче по протоколу TCP данные делятся на сегменты.

Сегмент.

Это часть пакета. Когда приходит пакет данных, который превышает пропускную способность сети, пакет делится на сегменты допустимого размера. Сегментация пакетов также требуется в ненадежных сетях, когда существует большая вероятность того, что большой пакет будет потерян. При передаче данных по протоколу UDP пакеты данных делятся уже на датаграммы.

Датаграмма (datagram).

Это тоже часть пакета, но ее нельзя путать с сегментом.

Главное отличие датаграмм — в автономности. Каждая датаграмма содержит все необходимые заголовки, чтобы дойти до конечного адресата, поэтому они не зависят от сети, могут доставляться разными маршрутами и в разном порядке. При потере датаграмм или сегментов получаются «битые» куски данных, которые не получится корректно обработать.

Пятый уровень, сеансовый (session layer).

Пятый уровень оказывает услугу следующему:

  • Управляет взаимодействием между приложениями.
  • Открывает возможности синхронизации задач.
  • Завершения сеанса.
  • Обмена информации.

Службы сеансового уровня зачастую применяются в средах приложений, требующих удаленного вызова процедур, т.е. чтобы запрашивать выполнение действий на удаленных компьютерах или независимых системах на одном устройстве (при наличии нескольких ОС).

Примером работы пятого уровня может служить видеозвонок по сети. Во время видеосвязи необходимо, чтобы два потока данных (аудио и видео) шли синхронно. Когда к разговору двоих человек прибавится третий — получится уже конференция. Задача пятого уровня — сделать так, чтобы собеседники могли понять, кто сейчас говорит.

Шестой уровень, представления данных (presentation layer).

Шестой уровень отвечает за преобразование протоколов и кодирование / декодирование данных. Шестой уровень также занимается представлением картинок (в JPEG, GIF и т.д.), а также видео-аудио (в MPEG, QuickTime). А помимо этого → шифрованием данных, когда при передаче их необходимо защитить.

Седьмой уровень, прикладной (application layer).

Прикладной уровень — это то, с чем взаимодействуют пользователи, своего рода графический интерфейс всей модели OSI, с другими он взаимодействует по минимуму.

Все услуги, получаемые седьмым уровнем от других, используются для доставки данных до пользователя. Протоколам седьмого уровня не требуется обеспечивать маршрутизацию или гарантировать доставку данных, когда об этом уже позаботились предыдущие шесть. Задача седьмого уровня — использовать свои протоколы, чтобы пользователь увидел данные в понятном ему виде.

Разница между роутером и маршрутизатором.

Роутер соединяет между собой устройства в сети, обеспечивает передачу пакетов данных, которая передается как с девайса на девайс, так и в интернет. Маршрутизатор выделяет каждому из устройств локальный IP-адрес. Благодаря этому данные направляются точно в принимающее устройство, а не потеряются в сети при передаче.